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ROBINSON FORCING IS NOT ABSOLUTE* 

BY 

L A R R Y  M I C H A E L  M A N E V I T Z  

ABSTRACT 

Robinson (or infinite model theoretic) forcing is studied in the context of set 
theory. The major result is that infinite forcing, genericity, and related notions 
are not absolute relative to ZFC. This answers a question of G. Sacks and 
provides a non-trivial example of a non-absolute notion of model theory. This 
non-absoluteness phenomenon is shown to be intrinsic to the concept of infinite 
forcing in the sense that any ZFC-definable set theory, relative to which forcing 
is absolute, has the flavor of asserting self-inconsistency. More precisely: If T is 
a ZFC-definable set theory such that the existence of a standard model of T is 
consistent with T, then forcing is not absolute relative to 7". For example, if it is 
consistent that ZFC + " there  is a measureable cardinal" has a standard model 
then forcing is not absolute relative to ZFC + "there  is a measureable cardinal." 
Some consequences: I) The resultants for infinite forcing may not be chosen 
"effectively" in general. This answers a question of A. Robinson. 2) If ZFC is 
consistent then it is consistent that the class of constructible division rings is 
disjoint from the class of generic division rings. 3) If ZFC is consistent then the 
generics may not be axiomatized by a single sentence of L , ~  

0. Introduction 

Abraham Robinson introduced forcing to model theory in a series of papers in 
1969-70 ([37], [38], [39]). Motivated both by Paul Cohen's work in set theory and 
by the idea of "potential satisfaction of existential formulas" [35], he created two 

distinctive types of forcing: finite forcing (which closely resembles Cohen 
forcing) and infinite forcing. 

Finite forcing has proved a useful tool in model theory ([26], [45]); it turns out 

to be a way to avoid using the Omitting Types Theorem. 

Infinite (or "Robinson") forcing, on the other hand, has not produced 

dramatic applications. Its main virtue, so far, seems to be an added insight into 
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the notion of "algebraic closedness" [40]. (Infinite forcing provides a canonical 

way of constructing an algebraically closed extension of any model of an 

inductive theory. These models (generics) may then be studied for their structure 

theory, etc., independently of the forcing definition. The added insight gives a 

remarkably short proof of Lindstr6m's theorem that an inductive Nl-categorical 

theory with no finite models is model complete.) 

This paper gives one reason for the lack of applicability of infinite forcing - -  it 

is not absolute relative to ZFC. 

In fact, it must be non-absolute relative to any " t rue"  set theory. (This answers 

a question of G. Sacks [43]). This is pertinent since, as Sacks has pointed out [43], 

most model-theoretic concepts are absolute. 

The outline of this paper is as follows: w contains the basic definitions and 

results of forcing and set theory pre-requisite for this work. w contains the proof 

that Robinson-forcing is not absolute relative to ZFC. Consequences are also 

included. Among these are: 1) Generics may not be axiomatized by a single 

sentence of L ~  (previously proved by A. Macintyre). 2) If ZFC is consistent 

then it is consistent that the class of generic division rings formed in G/Sdel's 

constructible universe is disjoint from the class of generic division rings. 3) The 

resultants for infinite forcing may not be chosen "effectively" under any sensible 

notion of "effectiveness." This answers a question of Robinson. 

A discussion of the absoluteness of the levels of the approximating generic 

hierarchies is also included. 

w points out that these results are not a consequence of the particular choice 

and strength of ZFC. In fact, no " t rue"  extensions of ZFC will be strong enough 

to require that Robinson-forcing be absolute relative to it. 

More precisely: If ZFC + �9 + "ZFC + tl, has a standard model" is consistent, 

then infinite forcing and related concepts are not absolute relative to ZFC + ~.  

For example, take �9 to be the single sentence asserting the existence of a 

measurable cardinal, or take �9 to be V = L. 

It is also pointed out that the assumption (TF) tL~= T F for all countable 

constructible T is equivalent to P(to) = P(o~) tL~. This answers a question raised 

by M. Boffa and A. Macintyre. 

This work consists of a major part of the author's dissertation, Yale, 1975. The 

problem was suggested by A. Robinson in the fall of 1972, and about half of the 

work was done under his supervision. The remainder was completed while A. 

Macintyre served as thesis advisor. 

The author wishes to acknowledge his gratitude to Angus Macintyre for his 

advice and encouragement and to express his enormous personal and intellectual 
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debt to Abraham Robinson. He is missed even more as a person than as a 

mathematician. 

Support from the National Science Foundation in the form of a Graduate  

Fellowship and grant NSF-34088 is gratefully acknowledged. The Yale 

mathematics department provided a pleasant atmosphere for work. 

This paper was written while the author was a Hebrew University Post- 

Doctoral Fellow. Zaeva Mauda is thanked for typing the manuscript. 

1. Preliminaries and background 

I. Forcing 

The basic reference for infinite model theoretic forcing is [37]. A very readable 

and comprehensive account of the development of the theory appears in [19] and 

the reader is referred there for further reference. Accordingly, it will suffice here 

to state the bare essentials that are required for this work. Most proofs are 

omitted; they may be found in [19]. The model theoretic notation is standard; 

the encyclopedic reference is [7]. 

The meta-theory for this paper is ZFC. 

1.1. Let M be a structure for a language L. The language of M, denoted 

L(M) ,  is the expansion of L to a language including constants for all the 

members of M. (The precise method of assigning constants is irrelevant as long 

as the constants are new symbols. It will be assumed that if M C N then L (N) is 

an expansion of L(M) in the obvious way. This point will not be further 

belabored). 

1.2. DEFINITION. Let T be a consistent theory in some language. Let E(T)  be 

the class of all models of T. The relation M (infinitely Robinson) forces ~, 
M I~r~p, between elements of E(T)  and sentences in their language is defined by 

induction: 

i) If ~ is atomic then M l ~ r ~  precisely when q~ holds in M. 

ii) If ~0 is of the form ~bA X then M l~rtp precisely when M l~rO and 

MI~Tx. 
iii) If ~ is of the form 3x~b(x) then M I~rtp precisely when there is a constant 

a, in the language of M, such that M I~Tr 

iv) If ~0 is of the form - ~ then M I~r~  precisely when there is no extension 

N of M in Y.(T) such that N I ~ / , .  

Robinson's original setting is more general than that presented here (a fact 
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exploited by G. Cherlin [8] in particular). However, this suffices for the present 

investigation. 

Robinson proved the "usual" forcing lemma: 

1.3. PROPOSITION. For any theory T, for any M E E(T) and for any ~o E L(M),  

either M l~r~ or M l~r ~ ~. 

1.4. PROPOSITION. If M and N are in E(T) with M C_ N and ~ E L ( M )  then 

M Ik~rq~ implies N I~T~o. 

The proof of 1.4 is quite typical of elementary results in forcing theory; it 

proceeds by induction following Definition 1.2. But what is the relation over 

which this induction is performed? 

The relation implicit in 1.2 is not well-founded. (This is a result of clause iv.) 

Thus, this definition is not, as it stands, realizable in ZFC. Of course, there is the 

expectation that an appropriate reformulation will capture the forcing concept in 

ZFC. This expectation is justified as can be seen from 1.6. However, that this is 

not automatic may be seen from the following example. 

1.5. EXAMPLE. M. Boffa [5] introduced a modification of Robinson forcing 

designed to deal only with structures with a binary relation, E. He then alters 

clause (iv) of Robinson's definition replacing "extension" by "end extension" 

(recall (N, F)  is an end extension of (M, E) if (N, F) is an extension of (M, E)  and 

if a E L ( M )  and N ~ b F a  then b ~ L(M)).  The results in [5] (e.g. that a 

Boffa~generic satisfies ZFC except for the axiom of regularity) shows that the 

consistency of ZFC is provable whenever his motion of forcing is definable. Thus 

Boffa-forcing is not definable in ZFC. The difference between Robinson and 

Boffa forcing is due mainly to a failure of the analogue for Boffa's theory of 1.6 

below. 

1.6. PROPOSITION. (L/Swenheim-Skolem Theorem for Forcing). Let A be the 

maximum of the cardinalities of T and No. I f  M ~ E(T)  and M I~r~ then there 

exists an M'  E Z(T)  such that M'  has cardinality A, M' C_ M and M'  I~rq~. 

Thus, it is clear that the same concept results if a cardinality bound is put into 

clause (iv) of 1.2. This modified definition may then be presented formally inside 

ZFC. This process in both laborious and straightforward and will be omitted 

here. The rigorous verification that the appropriate notion is captured relies on 

Beth's theorem. (Full details appear in [31].) 

To sum up, it may now be assumed that the relation M liar tp is expressible in 
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ZFC. In fact the meta-theory for both general forcing theory and the remainder 

of this work may henceforth be assumed to be ZFC. 

1.7. DEFINITION. An element M of E(T) is called T-generic (or Robinson 

infinite generic for T) if for any sentence ~ in the language of M, either M II=rq~ 

or M I~r - ~. (This is equivalent to the condition M I~rq~ if and only if M I ~ ~.) 

1.8. DEFINITION. A theory T is inductive if its class of models is closed under 

the union of chains. (By the Los-Suszko Theorem [36, 3.4.7] this means T is 

equivalent to a theory axiomatized by V::I sentences.) 

1.9. PROPOSITION. I f  T is inductive then every model of T is contained in a 

T-generic model. 

1.10. DEFINITION. Let T be inductive. T r is the set of sentences that hold in all 

T-generic models. This implies T ~ = {q~ I M ]~r - q~ for all M E E(T)}. 

A. Macintyre [28] and W. Wheeler [49] investigated the (recursive-theoretic) 

complexity of T F when T is an axiomatization of division rings. They discovered 

(using different methods) that in this case T ~ is recursively equivalent to full 

second order number theory. 

D. Goldrei, A. Macintyre and H. Simmons [16] and J. Hirschfeld [17] noticed 

the same phenomenon when T is full first order number theory, i.e. T F is 

recursively equivalent to full second order number theory. Macintyre [27] (and 

later Wheeler [49]) pointed out that this also occurs when T is an axiomatization 

of group theory. 

1.11. PROPOSITION. Let T be axiomatization of group theory in the language 

( . ,  e). Then T ~ is recursively equivalent to the true sentences of second order 

arithmetic. 

1.12. PROPOSITION. Let T be an axiomatization of division rings in the language 

( + , - ,  0, 1). Then T ~ is recursively equivalent to the true sentences of second order 

arithmetic. 

1.13. PROPOSITION. Let T be the set of all true sentences in arithmetic in the 

language ( + , . , 0 ,  1). Then T ~ is recursively equivalent to the true sentences of 

second order arithmetic. 

The equivalences in 1.11, 1.12 and 1.13 may be given by a one-to-one recursive 

function, [, such that [ ( -  ~ ) =  - [ ( ~ ) .  
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II. Set Theory 

Knowledge of sophisticated set-theoretic machinery is not a prerequisite for 

this work. For example, there are no Cohen forcing arguments. On the other 

hand, several deep results are needed at various points. Basic requirements are 

summarized here. For background reference see Fraenkel, Bar-Hillel and L6vy 

[14]. Other useful books are Cohen [9], Jech [21], Drake [11] and Devlin [10]. 

1.14. ZF(C) is the usual set of axioms of Zermelo-Frankel Set Theory (with 

the Axiom of Choice) formulated in the language with one binary relation, � 9  

The axioms of ZF are Extensionality, Pairing, Union, Power-Set, Infinity, and 

the schemes of Separation, Replacement and Regularity. 

1.15. A set z is transitive if x �9 y �9 z implies x �9 z. TC(x)  is the smallest (by 

inclusion) transitive set containing x. I xl  is the cardinality of x. H ( ; t ) =  

{x l l  TC(x)I  <)t} where A is a cardinal. 

1.16. A bounded quantifier is one of the form Vx (x �9 y ~ ~)  or of the type 

3x (x �9 y ^ ~o). Other quantifiers are unbounded. A formula is Eo = 1-Io if it 

contains no unbounded quantifiers. For n _-> 1, ~o is E, if it is of the form 3x~(x )  

where ~ is II,_1. ~0 is II,  if it is of the form Vx0(x) where ~k is E,-1. 

If T is a theory in the language of � 9  a formula, ~o is ~r(II~r) if there is a 

formula, ~, such that T F ~o ~ ~ where ~ is E, (resp. II,).  A formula is Ar if it is 
both E~ r and II~ r. 

1.17. M is a class if M is the collection of elements, x, such that ~(x)  holds, 

where ~0 is a formula in the language of � 9  

If E is a binary relation on M and ~0 is a sentence in the language of � 9  then 

~M) or ~(~M'~' means (M. E)I  = ~o. 

If (M, E)  and (N, F)  are structures with binary relations, then (N, F)  is said to 

be an end-extension of (M, E), (N, F)  D o,~ (M, E), if (N, F)  D (M, E)  as struc- 

tures and whenever m �9 M, n �9 N and nFm then n �9 M. 

A formula r �9 �9 x.) in the language of �9 is said to be absolute relative to a 

theory T (in the language of �9 ) if whenever (M, E)  ~ T, (N, F)  ~ T, (M, E)  Ce.~ 

(N,F),  and { m l , . . . m , } C M  then ( M , E ) ~ ( m ~ , . . . m , )  if and only if 

(N, F)  I = ~o (m 1,'" ", m,). 

1.18. Kripke-Platek Set Theory, KP, is the theory in the language of �9 which 

is a proper subset of ZFC and consists of the following axioms: Foundation 

Schema, Extensionality, Pairing, Unions, Ao-Separation Schema (i.e. the 

universal closure of VxrlzVx[x  �9 z ~ x  �9 y ^ q~(x, y)] where r is a Ao-formula), 
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and Ao-Collection Schema (i.e. the universal closure of V y V x ~ y 3 z  

[,r (x, y, z ) ~  3wVx ~ y 3 z  ~ w~o(x, y, z)]). 

1.9. PROPOSITION (Feferman-Kreisel [13]). If  T is a theory in the language of 

E such that KP C T, then formula q~ is absolute relative to T if and only if q~ is a 

h~ formula. 

1.20. PROPOSITION. Let M ~,_ q~ be the relation that holds between structures M 

for L and formulas ~ of L that hold in M. This relation is A~ rJ', and hence absolute 

for KP. 

Proposition 1.20 also holds with the language and appropriate satisfaction 

relation for L,~,, and L| See [2]. 

1.21. PROPOSITION (Montague-Levy Reflection Theorem). Let ( W  a lP  an 

ordinal) be a series of transitive sets such that: ira < [3 then W~ C_ W# and ira is a 

limit ordinal then Wa = I,.J~<~ W~. Let W = I-J~ordina~ W~. Let q~(x) be any formula 

in the language of ~ .  Then ZFt-V~::I~>~ [/3 is a limit ordinal ^ V I E  

we (9 (x)'W~ ~ ~ (x)'W0~)]. 

1.22. PROPOSITION (Mostowski-Shepherdson Collapsing Lemma). Let (M, E) 

be a model of Extensionality (i.e. VxVyOCz(z ~ x ~-~z ~ y)---~ x = y)) such that 

E is well founded. Then there is a unique transitive set M'  and a unique 

isomorphism from (M, E)  onto (M', E ). 

1.23. DEFINITION (G6del's Constructible Universe). 

L0= 0 
L~+~ = {x Ix is definable from L~} 

L~ = I,.J~<~L~ if [3 is a limit ordinal. 

A set is constructible if it belongs to L. 

1.24. PROPOSITION (G6del [15]). For every model V~ of ZF there is a structure 

V~ such that Vz C ,,d V1 and V2 ~ ZFC + V = L. 

1.25. PROPOSrnON (Shoenfield Absoluteness Lemma [47]). Let V ~ ZFC. Then 

the L (V)-standard model of second order arithmetic satisfies the same E~ sentences 

as the V-standard model of second order arithmetic. 

1.26. PROPOSITION (Jensen-Solovay [22]). If  ZFC is consistent then there are 

two models of ZFC, V~ and 1/2, with V~ C ,,d V2, Vz ~ "L = V: '  and V2 ~ "Every 

constructible subset of to is A~3. '' 
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2. Forcing is not absolute; consequences 

2.1. Let ~(Xl,''',Xn) be a formula in the language of E .  Recall that 

~0(x,, �9 �9 x.) is said to be absolute for a theory T if whenever V1, V2 are models 

of T with I/1Co.~ V2 and a l , . . . ,  a, elements of I,'1 then I/1 ~ ~o(a~, �9 �9 an) if and 

only if V: ~ ~0 ( a , , . . . ,  a,).  ~o (x~,.-. ,  x,) is said to be absolute in G6del's sense or 

absolute for L if, whenever a~,. �9 an are elements of L, ~0(a~, �9 �9 a . )  holds if 

and only if ~o(a,, . . . ,  a.)  ̀L~ holds. 

Note that "~0(x~,. . . ,x,)  is absolute for ZFC"  does not quite imply 

"~o(x , , . . . , x , )  is absolute in G6del's sense" since the former refers only to 

set-models. (Consider a model of ZFC + V r  L + ZFC is inconsistent. Then, in 

this model every formula is absolute for ZFC.) If "ZFC is consistent" is assumed 

then the absoluteness of ~o (x~, . . . ,  x.) implies the consistency of the statement 

"~o (x , . . . ,  x,) is absolute in G6del's sense." 

2.2. DEFINITION. SM is the sentence in the language of E which, in every 

model of ZFC, asserts the existence of a standard model for ZFC. 

Cons (ZFC) is a fixed natural sentence in the language of ZFC which asserts 

that ZFC is consistent. 

If T is definable in ZFC, Cons(T)  will be the statement asserting T is 

consistent. 

2.3. PROPOSITION (Cohen [9]). Assume SM. Then there is a minimal standard 

model for ZFC. This model satisfies V = L. 

PROOF. Well known. (A generalization is proved later. See 3.4.) [] 

The model in 2.3 is unique. Call it L , .  

2.4. PROPOSITION (Cohen [9]). In L , ,  SM is false. 

PROOF. If SM is true in L , ,  since L ,  is standard this contradicts the 

minimality of L , .  [] 

By the Lowenheim-Skolem Theorem, it is clear that II L ,  II = N0. 

2.5. PROPOSmON. Assume SM, Then (11 L ,  II = no) [] 

An application of the reflection theorem 1.21 yields the following. 

2.6. PROPOSITION. Assume SM. Then there is an ordinal [3 such that 

L~ ~ IlL, II--- no. [] 
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2.7. DEFINITION. Let /30 be the least ordinal satisfying the conclusion of 2.6. 

SM2 is the sentence in the language of ZFC asserting that ::la >/3o La I ~ ZFC. 

In a similar fashion, SM3, SM4, etc. could be defined. SM|  

L~ ~ ZFC. 

2.8. THEOREM. Assume SM and SM:. Then the function T F is not absolute 

relative to ZFC. 

PROOF. Let V be an La as in SM2. Then in V it is true, by the definition of 

SM2, that L ,  I = ZFC and that V ~ II L .  [[ = No. 

But this implies that the following sentence (*) is true in V: 

(*) " there  is a subset, A, of to and a binary relation E on A such that the 

structure (A, E )  encodes a standard model of ZFC."  

The Mostowski-Shepherdson Collapsing Lemma (1.22) (which is a conse- 

quence of ZFC) allows (*) to be written as 3 A  Cto::lE CA  • A [E is well 

founded & Wp [~ is an axiom of ZFC-- -~(A,E)~  ~]]. 

(*) is true in V since II L ,  11 = No implies the existence of a one-to-one function 

mapping L ,  into to. This function may be used to determine E, so that 

(A, E ) ~  L , .  (Obviously A may be chosen as to.) 

Since (*) is really a sentence about subsets of to, it follows that the sentence 

"There  is an A such that A encodes a standard model of ZFC."  is a sentence, ~, 

in second order  number theory which is true in the natural model of V. In other 

words, V ~ ((N, P(N)) ~ ~a). 

(To verify that q~ may be taken as a sentence of second order  number theory, 

two facts should be noted. First, the set of true sentences of first order number 

theory, while not arithmetically definable is hyperarithmetic and thus is defin- 

able in second order  arithmetic. (For a proof, see Moschovakis [33].) This means 

that the satisfaction predicate, (A, E )  ~ r is definable in second order  number 

theory. 

The second fact which should be noted is that the Mostowski-Shepherdson 

Collapsing Lemma (1.22) allows the fact that a structure is isomorphic to a 

standard one to he expressed in second order number theory.) 

On the other hand, by Proposition 2.4, i n /~ ,  ~o is false in the natural model of 

second order  arithmetic. But by Proposition 1.13 if T is the set of true sentences 

of first order arithmetic, there is a one-one recursive function, [, from sentences 

of second order  arithmetic to sentences of first order  arithmetic such that 

Ill t ~ T v if and only if (N, P(N)) ~ qJ. Moreover,  ( ~ qj)t = _ (qjr). 

Applying this to ~, (,pr E TV) ~ while ( -  ~o t E TV) tL',. Since V D c.n L . ,  this 

completes the proof. [] 
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The above result would be the main result of this section, i.e. forcing is not 

absolute relative to ZFC, if it were not for the presence of assumptions SM and 

SM2 in the hypothesis. It turns out that these assumptions can be replaced by 

Cons (ZFC) if the proper  choice of a sentence for T r is made. 

The elimination of SM and SM2 will require the consideration of non- 

standard models. As a tool towards this end, Lemma 2.10 is proved. 

2.9. Let (V, E )  be a model of ZFC, where it is not necessarily assumed that 

(V, E )  is isomorphic to a standard model. Let K be a language with a finite 

number  of relation and function symbols. (It is assumed here that K is defined so 

that it is set-theoretically well behaved, e.g. K is a subset of the hereditarily finite 

sets.) If follows that K ~v) is essentially identical with K. 

For definiteness, assume that the relation symbols of K are R1, �9 �9 Rr, where 

R~ is an r~-ary relational symbol, and the function symbols of K are f l , ' "  ", fro, 

where ~ is an sj-ary functional symbol. 

Now let M E  V be such that ( V , E ) ~ M  is a structure for K. Then 

( V , E ) ~ 3 M 3 R I . ' . 3 R k 3 f l . . ' 3 f m ,  M = ( M ,  R1, . ' . ,Rk,  f~,.. ' ,fm). Let Me = 

{x E V I xEM} and R, E = {ti E V [ ( V, E )  I = R, (al, �9 �9 a,,)}. Define ~-E as a func- 

tion from M~ to Me by ~-~(a~, . . - ,as,)= b if and only if 

( V , E ) ~ ( M ~ ( a l , . . . , a , j ) = b ) .  Let M e = ( M ~ , R I ~ , " ' , R k ~ , ' " , f , ~ ) .  Me is 

clearly a K-structure. 

2.10. LEMMA. Let (V, E), K, M, and ME be as above. Let ~o be a sentence in 
K(M~). Then M~ ~ o  if and only if ( V , E ) ~ ( M ~  ~o). 

PROOF. This is by induction on the complexity of ~0. 

i) If ~o is atomic then (M I = ~o) cv'e) if and only if ME I ~ ~0 by the definition of Me. 

ii) If ~0 is qJ ̂  X then Me ~ 9 r ./,re ~ * and Me ~ X 

r (by induction) (M ~ ~)~v.B~ & (M ~ X) ~v'e~ 
r (M ~ ~o) ~'e). 
iii) If ~0 is ~ ~ then ./,rE ~ ~0 r not ME ~ 0 

r (by induction) not (M ~ O) tv'~ 

r (M ~ ~0) tv'e~. 

iv) If ~o is ~xq,(x) then M~ ~ ~0 r162 ] a  ~ Me Me ~ ~ (a )  

r ~a ~ V (aEM and Me ~ if(a))  

r (by induction) ~a ~ V (aEM and (M ~ O(a)) ~  
r162 (=la ~ M and M ~ q~(a)) ~v'~) 

(M ~ ~xq~(x )) ~''~ 
r (M ~ q~ )~v.~. [] 
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In [1], J. W. Addison explicitly exhibited (in ZFC) a formula Cons t r (X)  of 

second order number theory such that 0 = VX Constr (X) is true in the natural 

model ((N, P(N)) )  if and only if every subset of the integers is constructible (i.e. 

P ( N ) C L ) .  Let f be the transformation of Proposition 1.11. Then O r will be the 

sentence that illustrates the non-absoluteness of the function T ~  T F. 

2.11. THEOREM. The consistency of ZFC + "There is a non-constructible 

subset of the integers" implies the non-absoluteness of the function T F relative to 

ZFC. 

PROOF. As in the proof of Theorem 2.8, it suffices to show that there are two 

models, V1 and V2, with V2 Cond V1 and a sentence, 0, in the  language of second 

order number theory such that ((N, P(N))  ~ O) iv2) while ((N, P(N) )  ~ ~ 0)  (v,). 

The choice of 0, as mentioned above, is VX Constr (X). V1 and V2 are chosen 

as follows. By hypothesis, there is a model of ZFC + "There  is a non- 

constructible subset of the integers." Let V~ be such a model. It is clear that 
((N, P(N) )  ~ > 0)  iv'). 

By G6del 's constructibility result, every model of ZFC has an inner model, its 

constructible universe. Let V2 be this inner model for V1, i.e. V= = L (vl). Since 

V2 is an inner model, V, 3 e,~ V2. Moreover,  since V2 ~ V = L, it follows that 

((N, P ( N ) ) ~  O) ~v2) is true. This completes the proof. [] 

2.12. REMARK. Although Cons t r (X)  is the same sentence as Addison's, 

V2 ~ ((N, P(N))  ~ V X  Constr (X)) does not imply that (N~, P(N)~)  is construc- 

tible. Lemma 2.10 does imply (N~, P ( N ) ~ ) ~  V X  Const r (X)  but non-well or- 

dered constructing sequences may have been used. 

2.13. COROLLARY. Cons (ZFC + V = L )  ~ T F is not absolute relative to ZFC. 

PROOF. By a Cohen-forcing argument with S M  eliminated (see [9, pp. 125, 

147] for details), Cons (ZFC + V = L )  implies Cons (ZFC + "There  is a non- 

constructible subset of the integers.") [] 

2.14. COROLLARY. Cons(ZFC)--~ T v is not absolute relative to ZFC. 

PROOF. G6del 's  constructibility result [15] is 

Cons (ZFC) ~ Cons (ZFC + V = L).  [] 

In the proof of Theorem 2.11, V2 = L (v,>. This observation proves the 

following result. 
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2.15. THEOREM. If ZFC is consistent, then it is consistent that T ~ is not absolute 

in G6del's sense. [] 

This answers a question of G. Sacks. 

The above is also the best possible result in the present meta-theory, since 

G6del 's  constructibility result may be stated as Cons(ZFC)---~Cons(ZFC + 

"Everything is absolute in G6del 's  sense"). 

Each of the following corollaries also has its analogue in terms of absoluteness 

in G6del 's  sense. 

2.16. COROLLARY. If ZFC is consistent then the ternary forcing relation 

M I~r~, is not absolute for ZFC. 

PROOF. Definition 1.10 states that T F = {~ I M I~r - - ~0 for all M E Y.(T)}. 

Since satisfaction is absolute for ZFC (Proposition 1.20), so is E(T). [] 

2.17. REMARK. For a particular T, it is possible for the binary relation M I~r~0 

to be absolute for ZFC. An example occurs when T is the theory of fields. 

2.18. COROLLARY. If ZFC is consistent then the notion of T-genericity is not 

absolute for ZFC. 

PROOF. Satisfaction is absolute (1.20) and any generic model must satisfy T ~. []  

2.19. COROLLARY. If ZFC is consistent, then it is consistent ihat the generic 

division rings are a disjoint class from the (generic division rings) tL>. 

PROOF. Use Proposition 1.12. [] 

The claim [40] that generic structures are the proper  realization of the notion 

of algebraic closedness is perhaps rendered more dubious by this last result. 

However,  recent results of Shelah [46] and Osofsky [34] illustrate that algebraic 

notions themselves may fail to be absolute for ZFC. In general, a problem may 

arise when inclusions or injections must be taken into account. But this is just 

what is important for considerations of algebraic closedness. Viewed in this light, 

Corollary 2.19 is not as surprising. 

2.20. COROLLARY. There is a sentence ~o in the language of division rings such 

that a generic may satisfy ~o only if the Continuum Hypothesis holds. It is also 

consistent with ZFC that ~ is true in every generic division ring. 

PROOF. Let ~o be the recursive translation of VX Constr (X) into the language 

of division rings (as given by 1.12). [] 
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2.21. THEOREM. I f  ZFC is consistent then it is consistent with ZFC that the 

infinite forcing companion of a finitely axiomatized theory not be constructible. 

PROOF. Let the theory be the axioms for group theory, G. The model of ZFC 

to be used is the one given by the Jensen-Solovay model (1.26). This model, V2, 

satisfies "every  constructible subset of to is analytical". By 1.11 G ~ is recursively 

equivalent to full second order  arithmetic and hence is certainly not analytical. 

Hence  (GF) (v~) f~ L (v~). [] 

This last result is a further answer to an innocent question of Martin Davis at 

the 1970 International  Congress at Nice. Davis asked if N r was arithmetical. 

2.22. REMARK. If there is a standard model for ZFC (i.e. SM holds) then the 

proofs of 2.11-2.20 yield more information. The counterexamples  to the 

absoluteness of T F, etc. may be taken to be standard models. 

Even without assuming SM stronger results than have been stated were 

shown. 

2.23. DEFINIanON. Let V~, V2 ~ ZFC. V~ is an ordinal end extension of V2, 

V~ D ord V:, if V~ D onO V2 and the ordinals of V~ are all in V2. 

~p (.~) is said to be ordinally absolute for ZFC if whenever  Vt D ord V2 and 

6 E  V2 then V 2 ~ p ( d )  r162 V l ~ r  

The next two lemmas are easy. See [21]. 

2.24. LEMMA. Let V = ZFC. Then L <v) Cor~ V. [] 

2.25. LEMMA. If  V~ is a Cohen extension of V2 then V~ D o~d Vz. [] 

The models used in the proofs of non-absoluteness of T F etc. were all of the 

above two types. Thus the following has already been shown. 

2.26. COROLLARY. I f  Z F C  is consistent then T ~ is not ordinally absolute relative 

to ZFC. 

Robinson's questions on resultants 

2.27. Let T be an inductive theory in some language K. Let ~p(x~, �9 �9 x,)  be a 

formula in K with free variables x l , "  ", x,. A. Robinson proved [37, 7.1] that 

there is a set of existential formulas, {g,~ (Xl," �9 ", x , ) l /z  ~ / ,  A ~ J} ( I  and J are 

index sets), such that if M is a model of T and a,,  �9 �9 a,  are elements of M, then 

M[I = - - ~ p ( a z , ' " , a ~ )  if and only if there is a /z E I such that for all A E J 

M ~ r ( a~ , . . . ,  a,) .  In the terminology of infinitary logic 
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M f ~  - -~o (a l , ' . . , a , )C:~  M ~  V A ~o,~(a~,. . . ,a .) .  
~ t ~ l  A E J  

However, Robinson's proof of this theorem is very non-effective and thus 

gives no information as to how the ~ may be found. 

Of course, for a particular T, there may be a clear recursive method for finding 

such resultants. For example, if T is the theory of ordered fields, then the 

algorithm of Tarski and Seidenberg [20, VI.7-VI.9] for real closed fields will 

suffice. 

Robinson raised the natural question: Can the ~0,~ be chosen by some 

algorithmic method in the general case? 

The first problem encountered in any attempt to answer such a question is 

deciding just what should tbe meant by "algorithmic". The most common 

interpretation is via Church's Thesis, i.e. "algorithmic" means "recursive". 

Under this interpretation Robinson's question may be answered in the negative. 

However, this is for trivial reasons, e.g. I and J may be required to be 

uncountable sets. 

To avoid such trivialities, other interpretations of algorithms have been 

suggested as appropriate for model theory. Two such examples are recursive 

functionals [42] and Robinson's recent notion of "sets of derivations" [41]. 

One possible criterion that seems practically self-evident is that a notion of 

algorithm must be absolute for ZFC. However, to avoid cardinality problems 

only a weaker criterion will be assumed. 

2.28. CRITERION. A notion of algorithm must be ordinally absolute for ZFC. 

This criterion is sensible since an algorithm should not depend on which 

universe of set theory the decisions are made in, at least when the universes are 

not radically different "sizes". In any case, all of the examples cited above satisfy 

this criterion. 

2.29. THEOREM. Assume Criterion 2.28. There are theories T and formulas 

~0(Xl, �9 �9 x,)  in the language of T such that there is no algorithm for finding the 

resultants for ~o ( x l , "  ", x,). 

PROOF. By Robinson's result, if M ~ T then M I1 = - - ~0 ( a l , "  �9 ", a , )  if and 

only if M ~  V,A~0,A ( a l , - " , a n ) .  But by the absoluteness of satisfaction 

(following 1.20) the right side of this equivalence is absolute for ZFC. Thus if the 

~0~ were chosen by a method which was ordinally absolute for ZFC, the left side 

would also have to be ordinally absolute for ZFC. Since this would contradict 
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Corollary 2.26 it follows that the q~, may not be so chosen. Hence by Criterion 

2.28 the q~  may not be chosen algorithmically. [] 

Non-axiomatizability of generics 

2.30. Angus Macintyre proved in [29] that for certain theories T, the class of 

T-generic structures is not axiomatizable by a single sentence of L ... .  (For a 

description of L~,~ see [23]). 

This result follows (modulo the consistency of ZFC) easily from the previous 

results in this paper and a general observation of K. Jon Barwise [2]. (In the 

following KP are the Kripke-Platek axioms. It suffices for the present purposes 

to note that KP C ZFC.) 

2.31. FACT (theorem 3.5 of [2]). Let L be a language. A class H of 

L-structures that is closed under isomorphism is axiomatizable by a single 

sentence of L~,~ if and only if there is a predicate P(x, y) that is absolute for KP 

(and hence for ZFC) and a hereditarily countable set, a, such that H = 

{M[P(M, a)}. 

The set mentioned in Fact 2.31 is essentially the transitive closure of the 

language. Since this will not affect Corollary 2.18 the following is immediate. 

2.32. THEOREM. If ZFC is consistent then there are theories T such that the class 

of T-generic structures are not axiomatizable by a single sentence of L ~ .  

The generic hierarchies 

2.33. Several people (G. Cherlin [8] and D. Saracino [44], H. Simmons [48], 

and later J. Hirschfeld and W. Wheeler [19]) have shown how the class of generic 

structures of a theory T may be obtained as a limit of a hierarchy of classes of 
structures. 

These hierarchies are all defined in the following fashion: 

1) E1 is the class of existentially complete structures. 

2) E,  is defined in terms of E,_~. 

In each case, E,  CE,_~ and G = O , ~ E . .  (G is the class of generic struc- 

tures.) 

As was noted in the introduction, if T is a theory absolute for ZFC then E1 is a 

class that is absolute relative to ZFC. (This may be proved by noting that E1 may 

be axiomatized by a single sentence of L,o,~ [50, 2.2] and applying Fact 2.28.) On 

the other hand, Corollary 2.18 has established that G is not an absolute class. 
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Since both of these results are theorems of ZFC it follows that 

(*) ZFC I- "If  ZFC is consistent then there is an integer n such that E~ is not 

absolute for ZFC (for a general theory T) while E~_I is absolute for ZFC (for any 

theory T)."  

Of course, the value of n in (*) will depend on the particular hierarchy chosen. 

Moreover,  it is not clear, a priori, that n will not depend on the model of ZFC in 

which it is calculated. 

However,  if the hierarchy is taken to be the Hirschfeld hierarchy, then 

Hirschfeld's work [17] makes the calculation of n straightforward. It turns out 

that n = 4. A similar calculation can be done for the other  hierarchies. 

2.34. DEFINITION. E1 is the class of existentially complete models of 

arithmetic. 

M E En§ if and only if M E E,  and every En§ formula in the language of M 

that holds in some extension of M in En holds in M. (Recall that a formula of 

first order  theory is E,  if it is a formula with only n alternations of unbounded 

quantifiers. See [17].) 

2.35. DEFINITION (Hirschfeld). Let M E  El. (N, SM) is a structure for the 

language of second order  arithmetic, where N is to (which is always definable in 

M)  and SM is the set of subsets of N that are existentially definable in M. Note 

that this definition is absolute for ZFC. 

2.36. DEFINITION. A sentence of second order  number theory is ~ if it has at 

most n - 1 alternations of set quantifiers beginning with an existential one. 

2.37. DEFINITION. An to-structure (N, S), where S CP (N ) ,  for second-order 

number theory is a fin-model if any E~, formula with parameters from (N, S) 

holds in (N, P(N)) (the standard model) if and only if it holds in (N, S). 

Note: The notion of ft ,-model is not absolute for ZFC for arbitrary n. 

2.38. PROPOSITION (Hirschfeld [17]). M is a fl, model if and only if M E E,+1. [] 

2.39. THEOREM. Let T be the theory of first order number theory and let E,  be as 
in Definition 2.34 for T. Then membership in E3 is absolute for ZFC while 

membership in E4 is not absolute for ZFC. 

PROOF. The Shoenfield Absoluteness Lemma (1.25) essentially states that the 

class of fl2-models is absolute for ZFC. It follows by Proposition 2.38 that E~ is 

an absolute class. 
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On the other  hand Addison [1] showed that the sentence VX Constr  (X)  is ~r~, 

and hence (e.g. as in the proof  of Theorem 2.11) the class of/33-models is not 

absolute for ZFC. By Proposition 2.38 it follows that E4 is not an absolute class. 

3. ZFC is not important 

The previous section presented a proof that genericity and related concepts 

are not absolute relative to ZFC. To what extent was this a consequence of the 

strength of ZFC? Put another  way, is it possible that there is an extension of 

ZFC, ZFC + dp, such that T ~ is absolute relative to ZFC + dp? This situation is 

not ruled out by the results of the previous section (afortiori, forcing is not 

absolute relative to any weaker, set theory, e.g. KP or ZF). 

If the strength of ZFC was significant then it would be natural to look for new 

axioms q~ such that forcing is absolute relative to ZFC + ~ .  Of course, these 

axioms should be " t rue"  ones, i.e. they should hold in the universe. This turns 

out not to be a viable idea. 

3.1. DEFINITION. Let qb be any set of sentences in the language of ZFC such 

that qb is definable in ZFC. S M .  is the sentence asserting that ZFC + qb has a 

standard model. 

In this section qb will always be a definable set of sentences. Thus S M .  will 

always be defined. 

The aim of this section is to prove the following. 

3.2. THEOREM (ZFC). I f  ZFC + qb + S M .  is consistent then T F is not absolute 

relative to ZFC + qb. 

It is unknown if Con (ZFC + ~ )  implies the non-absoluteness of T v relative to 

ZFC + ~ ,  or even if S M .  is sufficient. However ,  the following holds. 

3.3. THEOREM (ZFC). I f  ZFC + ~ + SM| has a standard model then T F is not 

absolute relative to ZFC + ~.  

While Theorem 3.3 is a direct consequence of Theorem 3.2, 3.3 will nonethe- 

less be proved first since its proof  will serve as a model for that of 3.2. 

3.4. LEMMA (ZFC). SM. implies the existence of a countable standard model of 

ZFC + qb + -- SM| 

PROOF. By hypothesis there is a standard model, V,, of ZFC + ~ .  Assume for 

contradiction that every such model satisfies SM| In particular V1 satisfies SM, .  

Hence there is a V~ E V, such that V1 ~ "V2 is a standard model of ZFC + ~ . "  
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Since V1 is standard, it follows that V2 is as well, and, by the absoluteness of 

satisfaction, V2 ~ ZFC + ~.  

By assumption V2 ~ S M .  as well. This allows the argument to be repeated, 

and in this fashion an E-chain  of models may be obtained: V1 D V: D V3 

�9 �9 �9 V, ~ Vn+, D �9 �9 �9 But the existence of such a chain contradicts the axiom of 

regularity. (Consider I_J, Ii",.) 

Thus there is a standard model of ZFC + qb + -- SM. .  A countable such model 

exists by the Lbwenheim-Skolwm Theorem. []  

3,5. DEFINmON. V is a minimal model for Z F C +  qb if V is countable, 

standard, transitive and V ~ ZFC + �9 + - SM. .  

3.6. COROLLARY (ZFC). S M .  implies the existence of a minimal standard 

model of ZFC + qb. []  

3.7. DEFINmON. STy, ((V, E))  is the sentence of second order  arithmetic that 

asserts that ( V , E )  is isomorphic to a standard transitive model of Z F C +  ~.  

(More precisely:. 

" E  is a binary relation on V and V m E V V n E V V k E V  

{[mEn ~--~ mEk  ]--~ n = k ] & V S C V 3 x  ~ SVy E S ( -  yEx ) & ( V, E )  is a model 

of ZFC + ~ . "  

The Mostowski-Shepherdson Collapsing Lemma, 1.22, has been used im- 

plicitly.) 

3.8. PROOF OF THEOREM 3.3. By hypothesis there is a standard model, V~, of 

ZFC + qb + SM. .  Since V1 ~ S M .  there is a Vl-standard model, V2, such that 

V2 ~ ZFC + ~.  Moreover,  by Lemma 3.4, relativized to V~, I/2 may be chosen to 

be minimal, i.e. such that (V2~ ~ SM| (v'). 

By the definition of minimality, V2 is Vrtransitive and Vrstandard.  Hence 

V1 D ond V2. Moreover,  V2 is actually standard (since VI is) and V2 I = ~ SM. .  

Since V2 ~ ~ SM. ,  ((to, P(to)) ~ - 3 X S T . ( X ) )  tv~). 

On the other hand, V~ ~ S M .  and therefore ((to, e( to))  ~ 3 X S T . ( X ) )  tv~ 

Hence the theory of second order  arithmetic in V, differs from that in Vs. 

Proposition 1.11 implies that T P is not the same in V~ and V2 when T is the 

theory of groups. Thus T F is not absolute relative to ZFC + ~.  [] 

3.9. PROOF OF THEOREM 3.2. By hypothesis, there is a model, (V,E) ,  not 

necessarily standard, of Z F C +  qb+ SM. .  Since ( V , E ) ~  S M ,  there is a V- 

standard model, M, of ZFC + �9 in V. By Lemma 3.4 (relativized to (V, E))  M 

may be chosen such that (V, E )  ~ " M  is a minimal model of ZFC + ~ . "  But then 

as in the proof of Theorem 3.3, 
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[M ~ ((to, P(to ) ~ ~ 3 X  ST . (X) ) ]  (v'~' 

while ( V, E )  ~ ((to, P(to) ~ 3 X S T . ( X ) ) .  

If (V, E> D end M the proof would be completed. However  M need not even be 

a model although it is a V-model. The tool to overcome this difficulty is precisely 

Lemma 2.10. (V,E>D~n~ME and by the conclusion of the lemma, 

ME ~ (<to, P(to)> ~ ~ 3XST,~(X)). [] 

Corollaries, in parallel with those of 2.15-2.19, follow directly. Since these are 

obvious they are omitted. However  the following is more interesting. 

3.10. COROLLARY. If ZFC is consistent then T F is not absolute relative to 

ZFC + Martin 's  Axiom.  

3.11. COROLLARY. If ZFC is consistent then T P is not absolute relative to 

ZFC + V = L. 

3.12. COROLLARY. If it is consistent that Z F C +  "there is a measureable 

cardinal" has a standard model, then T ~ is not absolute relative to ZFC + "there 

is a measureable cardinal". 

The same type of corollary holds for any proposed axiom. In particular, it 

holds for all large cardinal axioms. 

3.13. It is not known whether the assumption of the consistency of a standard 

model of ZFC + qb in 3.2, or the assumption SMs,,~ in 3.3 may be reduced to 

SM. .  The method of proof of these theorems will not suffice in this case since 

ZFC + d) + SM,, ~ Cons (ZFC + d) + SM~,). 

However,  the hypothesis of 3.2 is reasonable for any " t rue"  set theory. 

Expressed another  way, 3.2 says that any set theory, S, that extends ZFC, and 

relative to which forcing is absolute, is not consistent with the existence of a 

standard model of S. But as Cohen [9, p. 79] points out, such a consistency 

statement about a " t rue"  set theory is certainly " t rue" .  

3.14. As in section 2 all of the above results relativize to the consistency of 

non-absoluteness in G6del 's  sense. 

3.15. Considerations of absoluteness in G6del 's  sense lead to the following 

natural question. (It was raised by M. Boffa and A. Macintyre.) Suppose it is 

assumed that for all countable, inductive, consistent and constructible theories 

T, (T~) tL~= T v. How strong is this assumption? 

It turns out that this is actually equivalent to P(to) = P(ca) tL~. In the following 
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theorem it is necessary to recall the definition of Cons t r  (X),  that  appears  just 

pr ior  to 2.11. 

3.16. THEOREM (ZFC).  V T  ( T  is countable, inductive and  consistent theory) 

and  if  T E L then T F = (TF)  (L~ r ~N, P ( N ) )  ~ V X  Const r  (X).  

PROOF. ( : f f )  Let  V be an arbitrary model  of Z F C  such that for all countable ,  

consistent,  inductive and constructible T, T F =  (TF)  (L). By the definition of  

C o n s t r ( X ) ,  it is obvious  that 

((N, P (  N ) )  ~ V X Const r  (X))  (L'v'). 

Now let K be the axioms for g roup  theory.  By 1.11, " K  F is recursively 

equivalent  to second order  number  t heo ry"  is t rue in both  V and L (v>. 

Since K F = (KF)  (L), it follows that second order  number  theory  in L tv~ must 

be the same as second order  n u m b e r  theory  in V. Thus  

((N, P ( N ) )  ~ V X  Constr (X)) (v). 

( ~ )  This direction will only be sketched.  The  essential idea is that  since the 

constructible subsets of  ~o coincide with all of  the subsets of to, model  theory  is 

essentially the same in V and L. More  precisely, applications of  the 

L o w e n h e i m - S k o l e m  T h e o r e m  allow the duplication of  any tree of  countable  

structures inside L. Given 1.6, this is sufficient to prove T F = (TF) ~L). [ ]  
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